# Improved Lower Bounds for all Odd-Query LDCs

Arpon Basu\*, Jun-Ting Hsieh<sup>+</sup>, Pravesh K. Kothari\*, Andrew D. Lin\*

\*Princeton University, <sup>+</sup>MIT

#### Locally Decodable Codes (LDCs)

- A code  $C: \{\pm 1\}^k \to \{\pm 1\}^n$  is a q-Locally Decodable Code if any message bit  $x_i$  can be decoded by reading  $\leq q$  codeword bits of the encoding C(x).
- We study the optimal tradeoff between the blocklength n and the message length k and query complexity q.

#### Bounds in Terms of q

- For q=2, Hadamard codes achieve  $k=\log n$ , which is optimal.
- For  $q \geq 3$ , Efremenko-Yekhanin codes achieve  $k \geq 2^{(\log \log n)^{2-o(1)}}$ .
- The previously best known lower bounds were the following:

$$k \lesssim \begin{cases} \log n & q = 2 \text{ [GKST06]} \\ n^{1-2/q} & q \ge 4 \text{ even [KW04] or } q = 3 \text{ [AGKM23]} \\ n^{1-2/(q+1)} & q \ge 5 \text{ odd [KW04]} \end{cases}$$

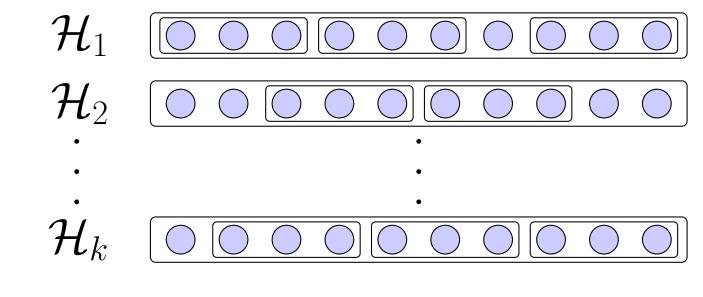
- Prior to the work of [AGKM23], all best known bounds for odd q were directly from treating the q-LDC as an even (q+1)-LDC.
- In our work, we improve the bounds for odd q.

## Main Theorem: $q \ge 3$ -LDCs

For all  $q \ge 3$ -LDCs, we have  $k \lesssim n^{1-2/q}$ .

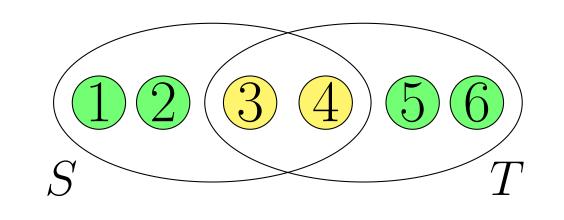
## Normal LDCs: Query Set Model

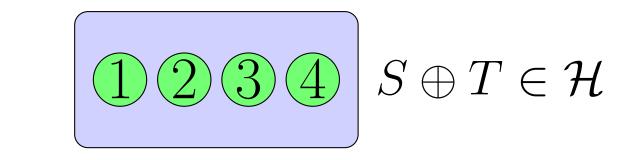
- A q-uniform hypergraph matching on [n] is a collection of pairwise disjoint size-q subsets of [n].
- If C is a normal q-LDC, then for any  $i \in [k]$ , there exists a q-uniform hypergraph matching  $\mathcal{H}_i$  on [n] with  $\Omega(n)$  hyperedges such that for all  $C \in \mathcal{H}_i$ , we have  $x_i = x_C := \prod_{j \in C} x_j$ . We write  $\mathcal{H} = \bigcup_{i \in [k]} \mathcal{H}_i$ .
- Using a standard reduction, we can assume our LDC is normal.



#### Kikuchi Graphs: Even q

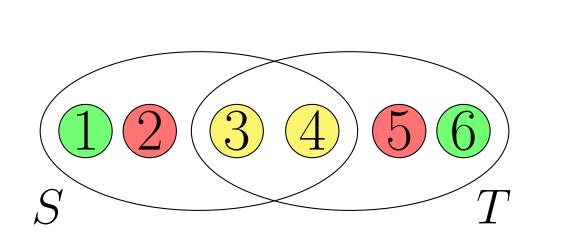
We define the *Kikuchi graph*  $K(\mathcal{H})$  at level  $\ell$  to be the graph with vertex set  $\binom{[n]}{\ell}$  and edges between any  $S, T \in \binom{[n]}{\ell}$  such that  $S \oplus T \in \mathcal{H}$ .

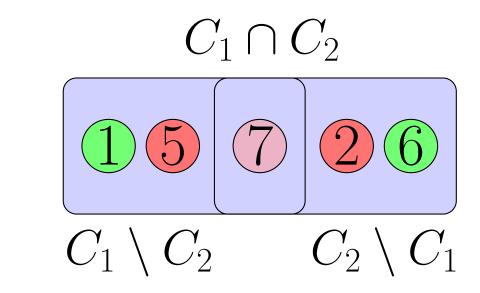




## Kikuchi Graphs: Odd q

For any t < q, we define the *Kikuchi graph*  $K_t(\mathcal{H})$  at level  $\ell$  to be the graph with vertex set  $\binom{[n]}{\ell}$  and edges between any  $S, T \in \binom{[n]}{\ell}$  such that  $S \oplus T = C_1 \oplus C_2$  for some  $C_1, C_2 \in \mathcal{H}$  such that  $|C_1 \cap C_2| = t$ .





## Regularity implies Bounds

- The average degree of a Kikuchi graph is  $\Omega(1)$  when  $\ell \geq n^{1-2/q}$ .
- If the Kikuchi graph is approximately regular, i.e. most vertices have degree  $\lesssim$  the average degree, then  $k \lesssim \ell$ .
- If the average degree is  $\Omega(1)$  and q is even, we delete an o(1) fraction of vertices to ensure the resulting subgraph is approximately regular.
- For odd q, the same holds w.h.p. if the  $\mathcal{H}_i$ s are random hypergraphs.

## Reducing to the Random Case [AGKM23]

- If we have some  $\{u, v\} \subseteq [n]$  such that  $\omega(\log n)$  hyperedges contain both u and v, the degree of S containing u or v in  $K_1(\mathcal{H})$  is too big.
- When q=3, we can take C,C' which both contain a "heavy pair"  $\{u,v\}$  and look at the size 2 sets  $C\oplus C'$ .
- We then use  $exponential\ lower\ bounds$  for 2-LDCs to prove the desired bound on k if many heavy pairs exist.
- Therefore, we reduce the problem to the case where all pairs are contained in  $O(\log n)$  hyperedges like in the random case.
- When q=5 and heavy pairs or triples appear, the above process produces sets  $C\oplus C'$  of size 6 or 4.
- There are no exponential lower bounds for 4- or 6-LDCs.

#### Finding a Weaker Sufficient Condition

- Since we cannot reduce to the random case for  $q \ge 5$ , we look for a weaker condition for Kikuchi regularity that allows for heavy tuples.
- Let  $d_r$  be the *co-degree* of r-tuples, i.e. the maximum number of hyperedges that contain any r-tuple in [n].
- When heavy tuples appear, we work with some  $K_t(\mathcal{H})$  for t > 1.
- While  $d_1 = \Theta(k)$  always holds,  $d_t$  can take a wide range of values.
- To ensure  $d_{\text{avg}}(K_t(\mathcal{H})) \geq \Omega(1)$ , we need  $d_t$  to be sufficiently large and each  $C \in \mathcal{H}$  must contain some t-tuple that appears in  $\Omega(d_t)$  other  $C' \in \mathcal{H}$ .

#### Relative Regularity Conditions

- As before, we need to exclude heavy tuples: i.e. we require upper bounds on each of  $d_1, \ldots, d_{t-1}, d_{t+1}, \ldots, d_q$ .
- These upper bounds must ensure  $K_t(\mathcal{H})$  is regular even though  $d_t$  is not asymptotically fixed.
- Instead of strict upper bounds, the bounds on  $d_r$  will depend on  $d_t$ .
- By using polynomial concentration techniques, we can show that there exists a function  $f_t$  such that if  $d_r/d_t \leq f_t(r)$  for all  $r \neq t$ , then  $K_t(\mathcal{H})$  is approximately regular.
- The blue and red conditions together are the approximate strong regularity conditions for ensuring regularity of  $K_t(\mathcal{H})$ .

## Picking t and pruning $\mathcal{H}$

- For the **conditions on the co-degrees**, we show we can always find some t such that  $d_t$  is large and all other  $d_r$  are upper bounded by  $d_t \cdot f_t(r)$ . We then work with  $K_t(\mathcal{H})$ .
- For the **condition on the hypergraph**, we drop hyperedges that do not contain a t-tuple which appears  $\Omega(d_t)$  times, as this keeps  $d_t$  invariant and can only decrease the other  $d_r$ .

#### Conclusions and Further Directions

- We improved the bound  $k \lesssim n^{1-2/(q+1)}$  to  $k \lesssim n^{1-2/q}$  for all odd  $q \geq 5$ , matching the best known bounds for even q and q = 3.
- Can the Kikuchi method be improved to obtain better bounds, perhaps even  $k \lesssim n^{o(1)}$ ?
- What other problems can we approach using the Kikuchi method?